Measuring dynamic and kinetic information in the previously inaccessible supra-τ(c) window of nanoseconds to microseconds by solution NMR spectroscopy.

نویسندگان

  • David Ban
  • T Michael Sabo
  • Christian Griesinger
  • Donghan Lee
چکیده

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool that has enabled experimentalists to characterize molecular dynamics and kinetics spanning a wide range of time-scales from picoseconds to days. This review focuses on addressing the previously inaccessible supra-tc window (defined as τ(c) < supra-τ(c) < 40 μs; in which tc is the overall tumbling time of a molecule) from the perspective of local inter-nuclear vector dynamics extracted from residual dipolar couplings (RDCs) and from the perspective of conformational exchange captured by relaxation dispersion measurements (RD). The goal of the first section is to present a detailed analysis of how to extract protein dynamics encoded in RDCs and how to relate this information to protein functionality within the previously inaccessible supra-τ(c) window. In the second section, the current state of the art for RD is analyzed, as well as the considerable progress toward pushing the sensitivity of RD further into the supra-τ(c) scale by up to a factor of two (motion up to 25 μs). From the data obtained with these techniques and methodology, the importance of the supra-τ(c) scale for protein function and molecular recognition is becoming increasingly clearer as the connection between motion on the supra-τ(c) scale and protein functionality from the experimental side is further strengthened with results from molecular dynamics simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy.

Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this...

متن کامل

Kinetics of conformational sampling in ubiquitin.

Molecular recognition plays a central role in many biological processes. For enzymatic reactions and slow protein–protein recognition events, turn-over rates and on-rates in the millisecond-to-second time scale have been connected to internal protein dynamics detected with atomic resolution by NMR spectroscopy, and in particular conformational sampling could be established as a mechanism for en...

متن کامل

Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy.

Solution- and solid-state nuclear magnetic resonance (NMR) spectroscopy are highly complementary techniques for studying supra-molecular structure. Here they are employed for investigating the molecular chaperone αB-crystallin, a polydisperse ensemble of between 10 and 40 identical subunits with an average molecular mass of approximately 600 kDa. An IxI motif in the C-terminal region of each of...

متن کامل

Investigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements

Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...

متن کامل

Investigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements

Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 10  شماره 

صفحات  -

تاریخ انتشار 2013